Hoos’ List

School of Engineering and Applied Science

Login: Want access to locations?

Catalog of Courses for Chemical Engineering

CHE 1501
Spec Topics Chemical Engr Offered Spring 2026

Student-led special topic courses which vary by semester.

Course was offered:  Spring 2026
CHE 2202
Thermodynamics Offered Spring 2026

Includes the formulation and analysis of the first and second laws of thermodynamics; energy conservation; concepts of equilibrium, temperature, energy, and entropy; partial molar properties; pure component and mixture equations of state; processes involving energy transfer as work and heat; reversibility and irreversibility; and closed and open systems and cyclic processes. Corequisite: APMA 2120

CHE 2215
Material and Energy Balances

Introduces the field of chemical engineering, including material and energy balances applied to chemical processes, physical and thermodynamic properties of multi-component systems. Three lecture and one discussion hour. Prerequisite: CHEM 1410 or CHEM 1610 or CHEM 1810, and APMA 1110 or MATH 1320.

CHE 2216
Mod & Simulation in Chem Engr Offered Spring 2026

Mathematical and computational tools for the analysis and simulation of chemical processes and physicochemical phenomena. Mathematical and numerical methods. Three lecture and one laboratory hour. Prerequisite CHE 2215, CS1110 or CS1111 or CS1112 or CS 1113; Co-requisite: APMA 2130 or MATH 3250, or APMA 2501 topic "Differential Equations & Linear Algebra"

CHE 2246
Introduction to Biotechnology

Introduction to the fundamentals of biochemistry and molecular and cell biology emphasizing their relevance to industrial applications of biotechnology. Three lecture hours. Prerequisite: CHEM 1410 or CHEM 1810.

CHE 2595
Special Topics Chemical Engr Offered Spring 2026

Chemical Engineering special topics vary by section.

Course was offered:  Spring 2026 · Fall 2025 · Spring 2025
CHE 3316
Chem Thermo & Staged Oper

Principles of chemical thermodynamics developed and applied to chemical and phase equilibria. Principles and methods for staged separation processes including distillation, absorption and stripping, extraction, and adsorption systems. Four Lecture Hours. Prerequisite: CHE 2202 and 2215.

CHE 3318
Chemical Reaction Engineering Offered Spring 2026

Determination of rate equations for chemical reactions from experimental data. Use of kinetics and transport relations in the design of both batch and continuous reactors; homogeneous, heterogeneous, uncatalyzed and catalyzed reactions. Three lecture hours. Prerequisite: CHE 2216, 3316; corequisite: CHE 3322.

CHE 3321
Trans Proc I:Momentum Trnsfr

Fundamental principles of momentum transport will be discussed and mathematical methods will be used to describe transport in steady state and unsteady state situations. This course will emplasize the application of these principles and quantitative relations to fluid flow problems. Three lecture hours . Prerequisite: APMA 2130, CHE 2215, 2216.

CHE 3322
Transpt Proc II: Heat & Mass Offered Spring 2026

Fundamental concepts of heat and mass transfer; applications of these concepts and material and energy conservation calculations for design of heat exchanger and packed absorption/stripping columns. Four lecture hours. Prerequisites: CHE 2216, 3316, 3321.

CHE 3347
Biochemical Engineering Offered Spring 2026

Quantitative engineering aspects of industrial applications of biology including the microbial synthesis of commercial products, environmental biotechnology, and the manufacture of biopharmaceuticals through recombinant microorganisms, transgenic animals, and plants. Three lecture hours. Prerequisite: CHE 2216, CHE 2246, CHE 3321; corequisite: CHE 3318, and 3322.

CHE 3398
Chemical Engineering Lab I Offered Spring 2026

Experimental study of selected operations and phenomena in fluid mechanics and heat transfer. Students plan experiments, analyze data, calculate results and prepare written and/or oral planning and final technical reports. One hour discussion, four laboratory hours. Prerequisite: CHE 2215 and CHE 3316 and CHE 3321; corequisite: CHE 3322

CHE 3610
Physical Chem for Engineers

This course will cover the fundamentals of Physical Chemistry with an emphasis on engineering-relevant topics and applications. This course will connect molecular properties to macroscopic observables via the fundamentals of thermodynamics, quantum theory, statistical mechanics, and chemical kinetics. Prerequisites: APMA 2130 and CHEM 1420 or equivalent

Course was offered:  Fall 2025
CHE 4417
Tissue Engineering Offered Spring 2026

Introduces the fundamental principles of tissue engineering. Topics: tissue organization and dynamics, cell and tissue characterization, cell-matrix interactions, transport processes in engineered tissues, biomaterials and biological interfaces, stem cells and interacting cell fate processes, and tissue engineering methods. Prerequisites: CHEM 1620, APMA 2130, and an introductory course in cell and molecular biology or instructor permission.

CHE 4438
Proc Synth, Modl and Contrl

Combining chemical engineering unit operations to create complete manufacturing processes, including safety, environmental, and economic considerations. Modeling processes using commercial simulation software. Analysis and design of control systems for chemical plants. Three lecture hours. Prerequisite: CHE 3318 and CHE 3322; Corequisite CHE 4475

CHE 4442
Applied Surface Chemistry Offered Spring 2026

Factors underlying interfacial phenomena, emphasizing thermodynamics of surfaces, structural aspects, and electrical phenomena. Application to areas such as emulsification, foaming, detergency, sedimentation, fluidization, nucleation, wetting, adhesion, flotation, and electrophoresis. Three lecture hours. Prerequisite: Instructor permission.

CHE 4445
Fund Process Safety Offered Spring 2026

This course will cover the fundamentals of Process Safety. We will apply chemical engineering fundamentals to identify various hazards within chemical processes and will assess the risks associated with these hazards. This course will also cover the process design approaches and other commonly adopted industry practices used to mitigate, control and/or manage risks associated with chemical processes. Coreq: CHE 3322 or MAE 3140; Prereq: CHE 3321 or MAE 3210

CHE 4448
Bioseparations Engineering

Principles of bioseparations engineering, including specialized unit operations not normally covered in regular chemical engineering courses. Processing operations downstream of the initial manufacture of biotechnology products, including product recovery, separations, purification, and ancillary operations such as sterile processing, clean-in place and regulatory aspects. Three lecture hours. Prerequisite: CHE 3322

CHE 4449
Polymer Chem & Engineering

Analyzes the mechanisms and kinetics of various polymerization reactions; relations between the molecular structure and polymer properties, and how these properties can be influenced by the polymerization process; fundamental concepts of polymer solution and melt rheology. Applications to polymer processing operations, such as extrusion, molding, and fiber spinning. Three lecture hours. Pre- or Co-requisite CHE 3321 or BME 3240 or MAE 3140

CHE 4450
Energy Science & Technologies

Overview of energy technologies with an emphasis on materials research and development concepts and current production. The scope of these technologies within the broader contexts of innovation and energy policy. Topics will include fossil fuels, electrochemical energy storage, fuel cells, and photovoltaics. Prerequisite (CHEM 1410 or CHEM 1610 or CHEM 1810) AND (CHE 2202 or MAE 2100 or MSE 3050).

CHE 4452
Data Sci in CHE

This course provides a practical introduction to data science and machine-learning for chemical engineers. These tools, not covered in the core UG ChE curriculum, have become increasingly relevant and widely used in the chemical engineering industry. Course topics include data storage and retrieval, dimensional reduction, classification, regression algorithms, resampling and regularization, and case studies in chemical engineering. Pre-requisite: (CS 1110 or CS 1111 or CS 1112 or CS 1113 or CS 1110 place-out exam) OR (APMA 2130 or MATH 3250) OR APMA 3110 OR CHE 2216 OR equivalent

Course was offered:  Fall 2025 · Fall 2024 · Spring 2024
CHE 4456
Bioproduct & Bioprocess Eng Offered Spring 2026

The course focuses on engineering's role in commercialization of vaccines and biologics. Biologics are more complex than small molecule drug products. This course includes an overview of vaccines and biologics from historical context, product, process and analytical technologies, immunology, clinical, regulatory and ethical considerations, economics, risk mitigation, and impact on human health. Prerequisites: 4th year in CHE or BME

CHE 4474
Proc Synth, Modl and Contrl

Combining chemical engineering unit operations to create complete manufacturing processes, including safety, environmental, and economic considerations. Modeling processes using commercial simulation software. Analysis and design of control systems for chemical plants. Three lecture hours. Prerequisite: CHE 3318 and CHE 3322; Corequisite CHE 4475

CHE 4475
Process Safety in Design

Understanding hazards and risk in a chemical process, managing risk by providing the appropriate layers of protection to reduce the frequency and severity of incidents, and learning from incidents when they happen. Introduction to the engineering and industry concepts. This course is an introduction to the engineering and industry concepts. One lecture hour. Prerequisites: CHE 3318 and CHE 3322. Co-requisite: CHE 4474

CHE 4476
Chemical Engineering Design Offered Spring 2026

Application of academically acquired skills to the practice of chemical engineering in an industrial environment: industrial economics; process synthesis and selection; flow sheet development; equipment sizing; plant layout and cost estimation. Report preparation and oral presentations. Use of commercial process simulation software. Two lecture hours, two discussion hours, and design laboratory. Prerequisite: CHE 2216 and CHE 3318 and CHE 3322 and CHE 4474 and CHE 4475.

CHE 4491
Chemical Engineering Lab II

Continuation of CHE 3398; emphasizes separations, chemical reaction, and process dynamics and control. One discussion and four laboratory hours. Prerequisite: CHE 3318, 3322, and 3398.

CHE 4561
Special Topics in Chem Engr Offered Spring 2026

Applies engineering science, design methods, and system analysis to developing areas and current problems in chemical engineering. Topics are announced at registration. Prerequisite:Third or Fourth-year standing and instructor permission.

CHE 4562
Spec Top in Chemical Engr

Applies engineering science, design methods, and system analysis to developing areas and current problems in chemical engineering. Topics are announced at registration. Prerequisite: Fourth-year standing and instructor permission.

CHE 4995
Chemical Engineering Research Offered Spring 2026

Library and laboratory study of an engineering or manufacturing problem conducted in close consultation with a departmental faculty member, often including the design, construction, and operation of laboratory scale equipment. Requires progress reports and a comprehensive written report. Prerequisite: Instructor permission.

CHE 5456
Bioproduct & Bioprocess Eng Offered Spring 2026

The course focuses on engineering's role in commercialization of vaccines and biologics. Biologics are more complex than small molecule drug products and present unique challenges in commercialization. This course includes an overview of vaccines and biologics from historical context, product, process and analytical technologies, immunology, clinical, regulatory and ethical considerations, economics, risk mitigation, and impact on human health. Prerequisites: 4th year or higher CHE or BME standing or Instructor Permission

CHE 5561
Spec Top: Chemical Engineering

Applies engineering science, design methods, and system analysis to developing areas and current problems in chemical engineering. Topics are announced at registration.

CHE 5562
Spec Top: Chemical Engineering Offered Spring 2026

Applies engineering science, design methods, and system analysis to developing areas and current problems in chemical engineering. Topics are announced at registration.

CHE 5600
Energy Outlook & Tech. Opt.

This course is intended to educate scientifically literate persons on the status of the energy challenge and to motivate them to contribute to solutions for energy needs. Historic patterns and future predictions for energy consumption, production and resources are reviewed, with a particular focus on transportation fuels and electric power generation. Challenges for fossil fuels, renewable energy and nuclear energy are discussed. Prerequisite: 4th year or higher standings in SEAS or Instructor Permission

Course was offered:  Spring 2014
CHE 6438
Process Control and Dynamics

Introduction to dynamics and control of process systems, controllers, sensors, and final control elements. Development and application of time- and frequency-domain characterizations of subsystems for stability analyses of closed control loops. State-space models, principles of sampled-data analysis and digital control techniques. Elementary systems identification with emphasis on dead time, distributed parameters, and nonlinearities. Prerequisite: Instructor permission.

CHE 6442
Applied Surface Chemistry Offered Spring 2026

Factors underlying interfacial phenomena, with emphasis on thermodynamics of surfaces, structural aspects, and electrical phenomena; applications such as emulsification, foaming, detergency, sedimentation, flow through porous media, fluidization, nucleation, wetting, adhesion, flotation, electrocapillarity. Prerequisite: Instructor permission.

CHE 6445
Fund Process Safety Offered Spring 2026

This course will cover the fundamentals of Process Safety. We will apply chemical engineering fundamentals to identify various hazards within chemical processes and will assess the risks associated with these hazards. This course will also cover the process design approaches and other commonly adopted industry practices used to mitigate, control and/or manage risks associated with chemical processes. Prerequisites: Chemical Engineering graduate student

CHE 6447
Biochemical Engineering Offered Spring 2026

Introduction to properties, production, and use of biological molecules of importance to medicine and industry, such as proteins, enzymes, and antibiotics. Topics may include fermentation and cell culture processes, biological mass transfer, enzyme engineering, and implications of recent advances in molecular biology, genomics, and proteomics. Prerequisite: Instructor permission.

CHE 6448
Bioseparations Engineering

Principles of bioseparations engineering including specialized unit operations not normally covered in regular chemical engineering courses. Processing operations downstream of the initial manufacture of biotechnology products, including product recovery, separations, purification, and ancillary operations such as sterile processing, clean-in place and regulatory aspects. Bioprocess integration and design aspects. Prerequisite: Instructor permission.

CHE 6449
Polymer Chemistry &Engr

Analyzes the mechanisms and kinetics of various polymerization reactions; relations between the molecular structure and polymer properties, and how these properties can be influenced by the polymerization process; fundamental concepts of polymer solution and melt rheology. Applications to polymer processing operations, such as extrusion, molding, and fiber spinning. Three lecture hours. Prerequisite: CHE 3321 or instructor permission.

CHE 6450
Energy Science & Technologies

Overview of energy technologies with an emphasis on materials research and development concepts and current production. The scope of these technologies within the broader contexts of innovation and energy policy. Topics will include fossil fuels, electrochemical energy storage, fuel cells, and photovoltaics.

CHE 6452
Data Science Chem Eng

This course is a practical introduction to data science and machine learning with specific focus on chemical engineering applications. Lectures focus first on foundational programming skills, and the course continues with an overview of various techniques and algorithms used to solve real world chemical engineering problems. Substantial time is devoted to model selection and validation, and case studies in chemical engineering are explored. Prerequisites: Chemical Engineering graduate student

CHE 6476
Process Design and Economics

Factors that determine the genesis and evolution of a process. Principles of marketing and technical economics and modern process design principles and techniques, including computer simulation with optimization. Prerequisite: Instructor permission.

CHE 6561
Special Topics in ChE Offered Spring 2026
CHE 6605
Research Methods

The course provides practical instruction on the conduct of research at UVa. Students will be introduced to such topics as research infrastructure, responsible conduct of research, laboratory safety, time management, data management, literature searching methods, critical reviewing of the scientific literature, writing research proposals, and presenting scientific research findings.

CHE 6615
Advanced Thermodynamics

Development of the thermodynamic laws and derived relations. Application of relations to properties of pure and multicomponent systems at equilibrium in the gaseous, liquid, and solidphases. Prediction and calculation of phase and reaction equilibria in practical systems. Prerequisite: Undergraduate-level thermodynamics or instructor permission.

CHE 6618
Chemical Reaction Engineering Offered Spring 2026

Fundamentals of chemical reaction kinetics and mechanisms; experimental methods of determining reaction rates; introduction to heterogeneous catalysis; application of chemical kinetics, along with mass-transfer theory, fluid mechanics, and thermodynamics, to the design and operation of chemical reactors. Prerequisite: CHE 6625 and 6665.

CHE 6625
Transport Processes

Integrated introduction to fluid mechanics, heat transfer, and mass transfer. Development of the basic equations of change for transport of momentum, energy, and mass in continuous media. Applications with exact solutions, consistent approaches to limiting cases and approximate solutions to formulate the relations to be solved in more complicated problems. Prerequisite: Undergraduate transport processes

CHE 6630

Fundamental principles common to mass transfer phenomena, with emphasis on mass transfer in diverse chemical engineering situations. Detailed consideration of fluxes, diffusion with and without convection, interphase mass transfer with chemical reaction, and applications. Prerequisite: CHE 6625 and 6665.

CHE 6665
Tech for Chem Engr Anal & Des

Methods for analysis of steady state and transient chemical engineering problems arising in fluid mechanics, heat transfer, mass transfer, kinetics, and reactor design. Prerequisite: Undergraduate differential equations, transport processes, and chemical reaction engineering.

CHE 7796
Graduate Seminar Offered Spring 2026

Weekly meetings of graduate students and faculty for presentations and discussion of research in academic and industrial organizations. May be repeated.

CHE 7993
Independent Study
CHE 7995
Supervised Project Research Offered Spring 2026

Formal record of student commitment to project research for Master of Engineering degree under the guidance of a faculty advisor. May be repeated as necessary.

CHE 8582
Special Topics in Chem Engr

Special subjects at an advanced level under the direction of staff members. Prerequisite: Permission of the staff.

Course was offered:  Spring 2015
CHE 8819
Adv CHE Kinetics & Reactn Engr

Advanced study of reacting systems, such as experimental methods, heterogeneous catalysis, polymerization kinetics, kinetics of complex reactions, reactor stability, and optimization. Prerequisite: CHE 6618 or instructor permission.

CHE 8993
Independent Study

Detailed study of graduate course material on an independent basis under the guidance of a faculty member.