Catalog of Courses for Cross-Disciplinary Courses
This is the first in a two-semester course sequence for first-year SEAS undergraduates. Students are introduced to engineering practice and the design process, the concept of engineering as an endeavor that shapes and is shaped by society, the fundamentals of engineering ethics, and oral and visual communication. Majors and potential career paths are also introduced. Restricted to 1st Year Engineering Undergraduates or Instructor's Consent
This is the second in a two-semester course sequence for first-year SEAS undergraduates. Students will engage in an open-ended authentic design project that is performed as part of a team. Technical writing is emphasized, as is designing for social responsibility. Students will develop skills for prototyping, data analysis, and modeling. Restricted to First-Year Engineering Students or Instructor's Consent
Students set off on a two-course journey to develop (1) effective and intentional human-centered engineering design mindsets and behaviors, (2) their abilities to work in and find ways to exhibit leadership on design teams composed of people with different skills and roles, and (3) their abilities to communicate both within a design team and with external stakeholders. Prerequisite: first-year Rodman scholar status.
Synthesis Design II extends students' journey started in ENGR 1410 Synthesis Design I, a journey focused on developing effective and intentional human-centered engineering design mindsets and behaviors. The distinguishing feature is a client-based project which directly engages students with how engineers can impact people and how people can impact engineers while advancing their design, teamwork, and communication skills. Prerequisite: first-year Rodman scholar status.
Student led special topic courses which vary by semester.
Considers engineering practices and principles in their local and global context. Topics vary based upon student and faculty interest.
ENGR 1620 is a cornerstone course for first year engineering students. They are introduced to the philosophy and practice of engineering through hands-on experience in developing solutions for various open-ended, realistic challenges while considering the various contexts in which these challenges occur. Students will also learn about the majors SEAS offers and receive advisement about careers, plans of study, and major declaration. Prerequisite: First year enrollment in SEAS; exceptions are by instructor permission.
ENGR 1620 is a prerequisite for this course. If you have not taken ENGR 1620, take ENGR 1624 instead of this course. If you have already completed ENGR 1620, take this course. Introductory course in the use of quantitative engineering tools to model, characterize and predict system behavior. Excel and Matlab are applied to engineering problems posed in each of the engineering majors offered and several cross-curricular engineering endeavors.
Cornerstone course for first-year SEAS undergraduates, introducing them to engineering practice and design philosophy, via exposure to open-ended, realistic , hands-on challenges. Students engage in both individual and team work, and consider the contexts in which engineering challenges arise. SEAS majors and potential career paths are also introduced. Students who have taken ENGR 1620 or 1621 or both, can't enroll in ENGR 1624.
This course investigates a major source of human impact upon the Earth - energy consumption to fuel human activity. The course a) provides a cross-disciplinary perspective on the challenge of human-centered energy use, b) explains the historical origins of today's energy systems, c) describes current energy systems, d) examines the components of sustainable energy systems, and e) considers keys to their deployment.
A hands-on introduction to nanoscience for students of all majors: Microfabrication, nanoscale chemical and biological self-assembly, applications, technological and ethical challenges; Labs ranging from use of scanning tunneling and atomic force microscopes to DNA fingerprinting. Lecture/discussion meeting + one lab. For first two weeks of registration, enrollment will be limited to 1st and 2nd years (then opened to all).
Special Topics in Engineering.
Special tutorial with a topic declared in advance. The topic, work plan, and conditions are arranged by contract between instructor and student and approved by the department Chair, with a copy to be filed in the department office. Instructor's Consent Required.
Students will engage in supervised research in engineering, applying academic knowledge to real-world problems.
Special topics in engineering will vary based upon student and faculty interests.
Special topics in engineering will vary based upon student and faculty interests.
Special Topics Restricted to Rodman Scholars. Prerequisites: Rodman Scholar Status.
The ability to spatially localize, pattern and interconnect structures with nanoscale resolution is critical for emerging technologies. This course utilizes a hierarchical approach to survey nanotechnologies, beginning with the emerging phenomena at the nanoscale; their device application for electronics, photonics, biosensing and tissue regeneration; the fabrication of integrated nanosystems; and finally their impacts on environmental systems. Prerequisites: APMA 2130 or MATH 3250; and CHEM 1410; and PHYS 1425
A two-semester, multidisciplinary, capstone engineering design sequence; the primary objective of ENGR 4010/4020 is to provide students with a realistic and rigorous, culminating engineering design experience, which is reflective of contemporary professional practice. A disciplined design/development process is followed. Prerequisite: 4th year Engineering
A two-semester, multidisciplinary, capstone engineering design sequence; the primary objective of ENGR 4010/4020 is to provide students with a realistic and rigorous, culminating engineering design experience, which is reflective of contemporary professional practice. A disciplined design/development process is followed. Prerequisite: ENGR 4010
Advance projects course to be taken in parallel with STS 4010, 4020, or can be used for an advanced undergraduate course on a topic not covered in the course offerings. Prerequisite: instructor permission.
Prerequisite: instructor permission.
This course on Business and Technological Leadership is normally taught by a senior level corporate executive with broad experience who serves as the Brenton S. Halsey Distinguished Visiting Professor of Chemical Engineering and Related Disciplines. The instructor provides experienced insight on business and professional issues likely to be faced by engineers early in their careers. The course normally covers major business skills and competencies in career management, leadership, working in teams, problem solving, and change management as well as international issues facing global companies. Guest speakers will provide additional insights on theses topics.
Students register for this course to complement an industry work experience. Topics focus on the application of engineering principles, analysis, methods and best practices in an industrial setting. A final report is required. Registration is only offered on a Credit/No Credit basis. Courses taken for Credit/No Credit may not be used for any major or degree requirements.
Special topics in graduate engineering will vary based upon student and faculty interests.
This course introduces students to core concepts and principles in the engineering of Cyber-Physical Systems (CPS). It bridges the exploration of critical engineering concepts in CPS with an examination of ethics, policy and user design issues. Writing and other communication skills are emphasized, and students are required to show cumulative progress across the semester.
This course is designed to develop cross-competency in the technical, analytical, and professional capabilities necessary for the emerging field of Cyber-Physical Systems (CPS). It provides convergence learning activities based around the applications, technologies, and system designs of CPS as well as exploring the ethical, social, and policy dimensions of CPS work. The course also emphasizes the importance of communication as a necessary skill.
Students register for this course to complement an industry work experience. Topics focus on the application of engineering principles, analysis, methods and best practices in an industrial setting. A final report is required. Registration is only offered on a Credit/No Credit basis. Courses taken for Credit/No Credit may not be used for any major or degree requirements.
Students enrolled in this course will earn academic credit while they are working at an internship to gain valuable work experience in their field of study. The description of the student's internship must be submitted to the SEAS Graduate Office for approval prior to enrolling in this course. The course instructor is the faculty who the student will be reporting to during the internship, typically the student's advisor. For MS and PhD Only.
A zero-credit course with enrollment restricted to international scholars.
Graduate Teaching Instruction for doctoral students.
Students set off on a two-course journey to develop (1) effective and intentional human-centered engineering design mindsets and behaviors, (2) their abilities to work in and find ways to exhibit leadership on design teams composed of people with different skills and roles, and (3) their abilities to communicate both within a design team and with external stakeholders. Prerequisite: first-year Rodman scholar status.
Synthesis Design II extends students' journey started in ENGR 1410 Synthesis Design I, a journey focused on developing effective and intentional human-centered engineering design mindsets and behaviors. The distinguishing feature is a client-based project which directly engages students with how engineers can impact people and how people can impact engineers while advancing their design, teamwork, and communication skills. Prerequisite: first-year Rodman scholar status.
Student led special topic courses which vary by semester.
ENGR 1620 is a prerequisite for this course. If you have not taken ENGR 1620, take ENGR 1624 instead of this course. If you have already completed ENGR 1620, take this course. Introductory course in the use of quantitative engineering tools to model, characterize and predict system behavior. Excel and Matlab are applied to engineering problems posed in each of the engineering majors offered and several cross-curricular engineering endeavors.
Cornerstone course for first-year SEAS undergraduates, introducing them to engineering practice and design philosophy, via exposure to open-ended, realistic , hands-on challenges. Students engage in both individual and team work, and consider the contexts in which engineering challenges arise. SEAS majors and potential career paths are also introduced. Students who have taken ENGR 1620 or 1621 or both, can't enroll in ENGR 1624.
This course investigates a major source of human impact upon the Earth - energy consumption to fuel human activity. The course a) provides a cross-disciplinary perspective on the challenge of human-centered energy use, b) explains the historical origins of today's energy systems, c) describes current energy systems, d) examines the components of sustainable energy systems, and e) considers keys to their deployment.
A hands-on introduction to nanoscience for students of all majors: Microfabrication, nanoscale chemical and biological self-assembly, applications, technological and ethical challenges; Labs ranging from use of scanning tunneling and atomic force microscopes to DNA fingerprinting. Lecture/discussion meeting + one lab. For first two weeks of registration, enrollment will be limited to 1st and 2nd years (then opened to all).
Special Topics in Engineering.
Special tutorial with a topic declared in advance. The topic, work plan, and conditions are arranged by contract between instructor and student and approved by the department Chair, with a copy to be filed in the department office. Instructor's Consent Required.
Special topics in engineering will vary based upon student and faculty interests.
Special topics in engineering will vary based upon student and faculty interests.
Special Topics Restricted to Rodman Scholars. Prerequisites: Rodman Scholar Status.
A two-semester, multidisciplinary, capstone engineering design sequence; the primary objective of ENGR 4010/4020 is to provide students with a realistic and rigorous, culminating engineering design experience, which is reflective of contemporary professional practice. A disciplined design/development process is followed. Prerequisite: 4th year Engineering
A two-semester, multidisciplinary, capstone engineering design sequence; the primary objective of ENGR 4010/4020 is to provide students with a realistic and rigorous, culminating engineering design experience, which is reflective of contemporary professional practice. A disciplined design/development process is followed. Prerequisite: ENGR 4010
Advance projects course to be taken in parallel with STS 4010, 4020, or can be used for an advanced undergraduate course on a topic not covered in the course offerings. Prerequisite: instructor permission.
Prerequisite: instructor permission.
This course on Business and Technological Leadership is normally taught by a senior level corporate executive with broad experience who serves as the Brenton S. Halsey Distinguished Visiting Professor of Chemical Engineering and Related Disciplines. The instructor provides experienced insight on business and professional issues likely to be faced by engineers early in their careers. The course normally covers major business skills and competencies in career management, leadership, working in teams, problem solving, and change management as well as international issues facing global companies. Guest speakers will provide additional insights on theses topics.
This course introduces students to core concepts and principles in the engineering of Cyber-Physical Systems (CPS). It bridges the exploration of critical engineering concepts in CPS with an examination of ethics, policy and user design issues. Writing and other communication skills are emphasized, and students are required to show cumulative progress across the semester.
Students register for this course to complement an industry work experience. Topics focus on the application of engineering principles, analysis, methods and best practices in an industrial setting. A final report is required. Registration is only offered on a Credit/No Credit basis. Courses taken for Credit/No Credit may not be used for any major or degree requirements.
Graduate Teaching Instruction for doctoral students.